

    
      
          
            
  
jardin documentation

jardin (noun, french) – garden, yard, grove.

Jardin is a pandas.DataFrame-based ORM for Python applications.



	Getting started
	Installation

	Setup





	Querying
	SELECT queries

	INSERT queries

	UPDATE queries

	DELETE queries

	Raw queries

	Query from SQL file





	Comparators
	All comparators





	Features
	Query watermarking

	Scopes

	Soft deletes

	Multiple databases and master/replica split

	Replica lag measurement

	Connection drops recovery





	API reference
	jardin.Model

	jardin.Collection












          

      

      

    

  

    
      
          
            
  
Getting started


Installation

$ pip install jardin





or

$ echo 'jardin' >> requirements.txt
$ pip install -r requirements.txt







Setup

In your working directory (the root of your app), create a file named jardin_conf.py:

# jardin_conf.py

DATABASES = {
  'my_master_database': 'https://username:password@master_database.url:port',
  'my_replica_database': 'https://username:password@replica_database.url:port'
}

LOG_LEVEL = logging.DEBUG

WATERMARK = 'My Great App'





You can also place this file anywhere you want and point to it with the environment variable JARDIN_CONF.

If you’d like to balance the load among a few databases - especially among replica databases - you may give
multiple database URLs, separated by whitespace:

# jardin_conf.py

DATABASES = {
  'my_replicas': 'https://user:pass@replica1.url:port https://user:pass@replica2.url:port'
}

# On first access, jardin randomly picks an URL from the list and maintains connection
# "stickiness" during the lifetime of the process. In a long-running process,
# application may ask jardin to switch to other connections on the list by
# calling 'jardin.reset_session()'.





Then, in your app, say you have a table called users:

# app.py
import jardin

class User(jardin.Model):
  db_names = {'master': 'my_master_database', 'replica': 'my_replica_database'}





In the console:

>>> from app import User
>>> users = User.last(4)
# /* My Great App */ SELECT * FROM users ORDER BY u.created_at DESC LIMIT 4;
>>> users
id   name    email              ...
0    John    john@beatl.es      ...
1    Paul    paul@beatl.es      ...
2    George  george@beatl.es    ...
3    Ringo   ringo@beatl.es     ...





The resulting object is a pandas dataframe:

>>> import pandas
>>> isinstance(users, pandas.DataFrame)
True
>>> isinstance(users, jardin.Collection)
True









          

      

      

    

  

    
      
          
            
  
Querying


SELECT queries

Here is the basic syntax to select records from the database

>>> users = User.select(
              select=['id', 'name'],
              where={'email': 'paul@beatl.es'},
              order='id ASC',
              limit=1)
# SELECT u.id, u.name FROM users u WHERE u.email = 'paul@beatl.es' ORDER BY u.id ASC LIMIT 1; /* My Great App */
>>> users
id   name
1    Paul






Arguments

See API reference.

where argument

Here are the different ways to feed a condition clause to a query.



	where = "name = 'John'"


	where = {'name': 'John'}


	where = {'id': (0, 3)} – selects where id is between 0 and 3


	where = {'id': [0, 1, 2]} – selects where id is in the array


	where = [{'id': (0, 10), 'instrument': 'drums'}, ["created_at > %(created_at)s", {'created_at': '1963-03-22'}]]







For other operators than =, see Comparators.

inner_join, left_join arguments

The simplest way to join another table is as follows

>>> User.select(inner_join=["instruments i ON i.id = u.instrument_id"])





If you have configured your models associations, see Features, you can simply pass the class as argument:

>>> User.select(inner_join=[Instrument])







Individual record selection

You can also look-up a single record by id:

>>> User.find(1)
# SELECT * FROM users u WHERE u.id = 1 LIMIT 1;
User(id=1, name='Paul', email='paul@beatl.es', ...)
>>> User.find_by(values={'name': 'Paul'})
# SELECT * FROM users u WHERE u.name = 'Paul' LIMIT 1;
User(id=1, name='Paul', email='paul@beatl.es', ...)





Note that the returned object is a Record object which allows you to access attributes in those way:

>>> user['name']
Paul
>>> user.name
Paul








INSERT queries

>>> user = User.insert(values={'name': 'Pete', 'email': 'pete@beatl.es'})
# INSERT INTO users (name, email) VALUES ('Pete', 'pete@beatl.es') RETURNING id;
# SELECT u.* FROM users WHERE u.id = 4;
>>> user
id   name    email
4    Pete    pete@beatl.es







UPDATE queries

>>> users = User.update(values={'hair': 'long'}, where={'name': 'John'})
# UPDATE users u SET (u.hair) = ('long') WHERE u.name = 'John' RETURNING id;
# SELECT * FROM users u WHERE u.name = 'John';







DELETE queries

>>> User.delete(where={'id': 1})
# DELETE FROM users u WHERE u.id = 1;







Raw queries

>>> jardin.query(sql='SELECT * FROM users WHERE id IN %(ids)s;', params={'ids': [1, 2, 3]})
# SELECT * FROM users WHERE id IN (1, 2, 3);







Query from SQL file

>>> jardin.query(filename='path/to/file.sql', params={...})





The path is relative to the working directory (i.e. where your app was launched).





          

      

      

    

  

    
      
          
            
  
Comparators

The syntax where={'id': 123} works well for = conditions but breaks down for other operators. For that purpose, jardin offers comparators.

For example

>>> from jardin.comparators import *
>>> User.count(where={'created_at': gt(datetime.utcnow() - timedelta(day=1))})
# SELECT COUNT(*) FROM users WHERE created_at > '2018-04-29 12:00:00';






All comparators









	Comparator

	Operator

	Example

	Result





	lt

	<

	{'n': lt(3)}

	WHERE n < 3



	leq

	<=

	{'n': leq(3)}

	WHERE n <= 3



	gt

	>

	{'n': gt(3)}

	WHERE n > 3



	geq

	<=

	{'n': geq(3)}

	WHERE n >= 3



	not_null

	
	{'n': not_null()}

	WHERE n IS NOT NULL



	not_in

	
	{'n': not_in([1, 2])}

	WHERE n IS NOT IN (1, 2)










          

      

      

    

  

    
      
          
            
  
Features

..Associations
..————

..Belongs-to and has-many relationships can be declared as such:

..And then used as such:

..Or:


Query watermarking

By defining a watermark in your jardin_conf.py file:

WATERMARK = 'MyGreatApp'





Queries will show up as such in your SQL logs:

/* MyGreatApp | path/to/file.py:function_name:line_number */ SELECT * FROM ....;







Scopes

Query scopes can be defined inside your model as such:

class User(jardin.Model):

  scopes = {
    'active': {'active': True},
    'recent': ["last_sign_up_at > %(week_ago)s", {'week_ago': datetime.utcnow() - timedelta(weeks=1)}]
  }





Then used as such:

User.select(scopes = ['active', 'recent'])





Which will issue this statement

SELECT * FROM users u WHERE u.active IS TRUE AND u.last_sign_up_at > ...;







Soft deletes

If you don’t want to actually remove rows from the database when deleting a record, you can activate soft-deletes:

class User(jardin.Model):

  soft_delete = True





When the destroy method is called on a model instance, the deleted_at database field on the corresponding table will be set to the current UTC time.

Then, when calling select, count, delete or update, rows with a non-NULL deleted_at value will be ignored. This can be overridden by passing the skip_soft_delete=True argument.

The find method is not affected.

To force delete a single record, call destroy(force=True).

To customize the database column used to store the deletion timestamp, do:

class User(jardin.Model):

  soft_delete = 'my_custom_db_column'







Multiple databases and master/replica split

Multiple databases can be declared in jardin_conf.py:

DATABASES = {
  'my_first_db': 'postgres://...',
  'my_first_db_replica': 'postgres://...',
  'my_second_db': 'postgres://...',
  'my_second_db_replical': 'postgres://...'
}





And then in your model declarations:

class Db1Model(jardin.Model):
  db_name = {'master': 'my_first_db', 'replica': 'my_first_db_replica'}

class Db2Model(jardin.Model):
  db_name = {'master': 'my_second_db', 'replica': 'my_second_db_replica'}

class User(Db1Model): pass

class Project(Db2Model): pass







Replica lag measurement

You can measure the current replica lag in seconds using any class inheriting from jardin.Model:

jardin.Model.replica_lag()
# 0.001

MyModel.replica_lag()
# 0.001







Connection drops recovery

The exceptions psycopg2.InterfaceError and psycopg2.OperationalError are rescued and a new connection is initiated. Three attempts with exponential decay are made before bubbling up the exception.





          

      

      

    

  

    
      
          
            
  
API reference



	jardin.Model

	jardin.Collection








          

      

      

    

  

    
      
          
            
  
jardin.Model


	
class jardin.Model(**kwargs)

	Base class from which your models should inherit.


	
collection_class

	alias of Collection






	
destroy(force=False)

	Deletes the record. If the model has soft_delete activated, the record will not actually be deleted.


	Parameters

	force (boolean) – forces the record to be actually deleted if soft_delete is activated.










	
classmethod find(id, **kwargs)

	Finds a record by its id in the model’s table in the replica database.
:returns: an instance of the model.






	
classmethod find_by(values={}, **kwargs)

	Returns a single record matching the criteria in values found in the model’s table in the replica database.


	Parameters

	values (dict) – Criteria to find the record.



	Returns

	an instance of the model.










	
classmethod insert(**kwargs)

	Performs an INSERT statement on the model’s table in the master database.


	Parameters

	values (dict) – A dictionary containing the values to be inserted. datetime, dict and bool objects can be passed as is and will be correctly serialized by psycopg2.










	
classmethod last(limit=1, **kwargs)

	Returns the last limit records inserted in the model’s table in the replica database. Rows are sorted by created_at.






	
classmethod query(sql=None, filename=None, **kwargs)

	run raw sql from sql or file against.


	Parameters

	
	sql (string) – Raw SQL query to pass directly to the connection.


	filename (string) – Path to a file containing a SQL query. The path should be relative to CWD.


	db (string) – optional Database name from your jardin_conf.py, overrides the default database set in the model declaration.


	role (string) – optional One of ('master', 'replica') to override the default.






	Returns

	jardin.Collection collection, which is a pandas.DataFrame.










	
classmethod replica_lag(**kwargs)

	Returns the current replication lag in seconds between the master and replica databases.


	Returns

	float










	
classmethod table_schema()

	Returns the table schema.


	Returns

	dict










	
classmethod transaction()

	Enables multiple statements to be ran within a single transaction, see Features.












          

      

      

    

  

    
      
          
            
  
jardin.Collection


	
class jardin.Collection(data=None, index=None, columns=None, dtype=None, copy=False)

	Base class for collection of records. Inherits from pandas.DataFrame.


	
index_by(field)

	Returns a dict with a key for each value of field and the first record with that value as value.
:param field: Name of the field to index by.
:type field: string.






	
records()

	Returns an iterator to loop over the rows, each being an instance of the model’s record class, i.e. jardin_record by default.












          

      

      

    

  

    
      
          
            

Index



 C
 | D
 | F
 | I
 | L
 | M
 | Q
 | R
 | T
 


C


  	
      	Collection (class in jardin)


  

  	
      	collection_class (jardin.Model attribute)


  





D


  	
      	destroy() (jardin.Model method)


  





F


  	
      	find() (jardin.Model class method)


  

  	
      	find_by() (jardin.Model class method)


  





I


  	
      	index_by() (jardin.Collection method)


  

  	
      	insert() (jardin.Model class method)


  





L


  	
      	last() (jardin.Model class method)


  





M


  	
      	Model (class in jardin)


  





Q


  	
      	query() (jardin.Model class method)


  





R


  	
      	records() (jardin.Collection method)


  

  	
      	replica_lag() (jardin.Model class method)


  





T


  	
      	table_schema() (jardin.Model class method)


  

  	
      	transaction() (jardin.Model class method)


  







          

      

      

    

  _static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/minus.png





_static/plus.png





_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		
          jardin documentation
        


        		
          Getting started
          
            		
              Installation
            


            		
              Setup
            


          


        


        		
          Querying
          
            		
              SELECT queries
              
                		
                  Arguments
                


                		
                  Individual record selection
                


              


            


            		
              INSERT queries
            


            		
              UPDATE queries
            


            		
              DELETE queries
            


            		
              Raw queries
            


            		
              Query from SQL file
            


          


        


        		
          Comparators
          
            		
              All comparators
            


          


        


        		
          Features
          
            		
              Query watermarking
            


            		
              Scopes
            


            		
              Soft deletes
            


            		
              Multiple databases and master/replica split
            


            		
              Replica lag measurement
            


            		
              Connection drops recovery
            


          


        


        		
          API reference
          
            		
              jardin.Model
            


            		
              jardin.Collection
            


          


        


      


    
  

_static/up-pressed.png





_static/up.png





