

    
      
          
            
  
jardin documentation

jardin (noun, french) – garden, yard, grove.

Jardin is a pandas.DataFrame-based ORM for Python applications.
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Getting started


Installation

$ pip install jardin





or

$ echo 'jardin' >> requirements.txt
$ pip install -r requirements.txt







Setup

In your working directory (the root of your app), create a file named jardin_conf.py:

# jardin_conf.py

DATABASES = {
  'my_master_database': 'https://username:password@master_database.url:port',
  'my_replica_database': 'https://username:password@replica_database.url:port'
}

LOG_LEVEL = logging.DEBUG

WATERMARK = 'My Great App'





You can also place this file anywhere you want and point to it with the environment variable JARDIN_CONF.

If you’d like to balance the load among a few databases - especially among replica databases - you may give
multiple database URLs, separated by whitespace:

# jardin_conf.py

DATABASES = {
  'my_replicas': 'https://user:pass@replica1.url:port https://user:pass@replica2.url:port'
}

# On first access, jardin randomly picks an URL from the list and maintains connection
# "stickiness" during the lifetime of the process. In a long-running process,
# application may ask jardin to switch to other connections on the list by
# calling 'jardin.reset_session()'.





Then, in your app, say you have a table called users:

# app.py
import jardin

class User(jardin.Model):
  db_names = {'master': 'my_master_database', 'replica': 'my_replica_database'}





In the console:

>>> from app import User
>>> users = User.last(4)
# /* My Great App */ SELECT * FROM users ORDER BY u.created_at DESC LIMIT 4;
>>> users
id   name    email              ...
0    John    john@beatl.es      ...
1    Paul    paul@beatl.es      ...
2    George  george@beatl.es    ...
3    Ringo   ringo@beatl.es     ...





The resulting object is a pandas dataframe:

>>> import pandas
>>> isinstance(users, pandas.DataFrame)
True
>>> isinstance(users, jardin.Collection)
True









          

      

      

    

  

    
      
          
            
  
Querying


SELECT queries

Here is the basic syntax to select records from the database

>>> users = User.select(
              select=['id', 'name'],
              where={'email': 'paul@beatl.es'},
              order='id ASC',
              limit=1)
# SELECT u.id, u.name FROM users u WHERE u.email = 'paul@beatl.es' ORDER BY u.id ASC LIMIT 1; /* My Great App */
>>> users
id   name
1    Paul






Arguments

See API reference.

where argument

Here are the different ways to feed a condition clause to a query.



	where = "name = 'John'"


	where = {'name': 'John'}


	where = {'id': (0, 3)} – selects where id is between 0 and 3


	where = {'id': [0, 1, 2]} – selects where id is in the array


	where = [{'id': (0, 10), 'instrument': 'drums'}, ["created_at > %(created_at)s", {'created_at': '1963-03-22'}]]







For other operators than =, see Comparators.

inner_join, left_join arguments

The simplest way to join another table is as follows

>>> User.select(inner_join=["instruments i ON i.id = u.instrument_id"])





If you have configured your models associations, see Features, you can simply pass the class as argument:

>>> User.select(inner_join=[Instrument])







Individual record selection

You can also look-up a single record by id:

>>> User.find(1)
# SELECT * FROM users u WHERE u.id = 1 LIMIT 1;
User(id=1, name='Paul', email='paul@beatl.es', ...)
>>> User.find_by(values={'name': 'Paul'})
# SELECT * FROM users u WHERE u.name = 'Paul' LIMIT 1;
User(id=1, name='Paul', email='paul@beatl.es', ...)





Note that the returned object is a Record object which allows you to access attributes in those way:

>>> user['name']
Paul
>>> user.name
Paul








INSERT queries

>>> user = User.insert(values={'name': 'Pete', 'email': 'pete@beatl.es'})
# INSERT INTO users (name, email) VALUES ('Pete', 'pete@beatl.es') RETURNING id;
# SELECT u.* FROM users WHERE u.id = 4;
>>> user
id   name    email
4    Pete    pete@beatl.es







UPDATE queries

>>> users = User.update(values={'hair': 'long'}, where={'name': 'John'})
# UPDATE users u SET (u.hair) = ('long') WHERE u.name = 'John' RETURNING id;
# SELECT * FROM users u WHERE u.name = 'John';







DELETE queries

>>> User.delete(where={'id': 1})
# DELETE FROM users u WHERE u.id = 1;







Raw queries

>>> jardin.query(sql='SELECT * FROM users WHERE id IN %(ids)s;', params={'ids': [1, 2, 3]})
# SELECT * FROM users WHERE id IN (1, 2, 3);







Query from SQL file

>>> jardin.query(filename='path/to/file.sql', params={...})





The path is relative to the working directory (i.e. where your app was launched).





          

      

      

    

  

    
      
          
            
  
Comparators

The syntax where={'id': 123} works well for = conditions but breaks down for other operators. For that purpose, jardin offers comparators.

For example

>>> from jardin.comparators import *
>>> User.count(where={'created_at': gt(datetime.utcnow() - timedelta(day=1))})
# SELECT COUNT(*) FROM users WHERE created_at > '2018-04-29 12:00:00';






All comparators









	Comparator

	Operator

	Example

	Result





	lt

	<

	{'n': lt(3)}

	WHERE n < 3



	leq

	<=

	{'n': leq(3)}

	WHERE n <= 3



	gt

	>

	{'n': gt(3)}

	WHERE n > 3



	geq

	<=

	{'n': geq(3)}

	WHERE n >= 3



	not_null

	
	{'n': not_null()}

	WHERE n IS NOT NULL



	not_in

	
	{'n': not_in([1, 2])}

	WHERE n IS NOT IN (1, 2)










          

      

      

    

  

    
      
          
            
  
Features

..Associations
..————

..Belongs-to and has-many relationships can be declared as such:

..And then used as such:

..Or:


Query watermarking

By defining a watermark in your jardin_conf.py file:

WATERMARK = 'MyGreatApp'





Queries will show up as such in your SQL logs:

/* MyGreatApp | path/to/file.py:function_name:line_number */ SELECT * FROM ....;







Scopes

Query scopes can be defined inside your model as such:

class User(jardin.Model):

  scopes = {
    'active': {'active': True},
    'recent': ["last_sign_up_at > %(week_ago)s", {'week_ago': datetime.utcnow() - timedelta(weeks=1)}]
  }





Then used as such:

User.select(scopes = ['active', 'recent'])





Which will issue this statement

SELECT * FROM users u WHERE u.active IS TRUE AND u.last_sign_up_at > ...;







Soft deletes

If you don’t want to actually remove rows from the database when deleting a record, you can activate soft-deletes:

class User(jardin.Model):

  soft_delete = True





When the destroy method is called on a model instance, the deleted_at database field on the corresponding table will be set to the current UTC time.

Then, when calling select, count, delete or update, rows with a non-NULL deleted_at value will be ignored. This can be overridden by passing the skip_soft_delete=True argument.

The find method is not affected.

To force delete a single record, call destroy(force=True).

To customize the database column used to store the deletion timestamp, do:

class User(jardin.Model):

  soft_delete = 'my_custom_db_column'







Multiple databases and master/replica split

Multiple databases can be declared in jardin_conf.py:

DATABASES = {
  'my_first_db': 'postgres://...',
  'my_first_db_replica': 'postgres://...',
  'my_second_db': 'postgres://...',
  'my_second_db_replical': 'postgres://...'
}





And then in your model declarations:

class Db1Model(jardin.Model):
  db_name = {'master': 'my_first_db', 'replica': 'my_first_db_replica'}

class Db2Model(jardin.Model):
  db_name = {'master': 'my_second_db', 'replica': 'my_second_db_replica'}

class User(Db1Model): pass

class Project(Db2Model): pass







Replica lag measurement

You can measure the current replica lag in seconds using any class inheriting from jardin.Model:

jardin.Model.replica_lag()
# 0.001

MyModel.replica_lag()
# 0.001







Connection drops recovery

The exceptions psycopg2.InterfaceError and psycopg2.OperationalError are rescued and a new connection is initiated. Three attempts with exponential decay are made before bubbling up the exception.





          

      

      

    

  

    
      
          
            
  
API reference



	jardin.Model

	jardin.Collection








          

      

      

    

  

    
      
          
            
  
jardin.Model


	
class jardin.Model(**kwargs)

	Base class from which your models should inherit.


	
collection_class

	alias of Collection






	
destroy(force=False)

	Deletes the record. If the model has soft_delete activated, the record will not actually be deleted.


	Parameters

	force (boolean) – forces the record to be actually deleted if soft_delete is activated.










	
classmethod find(id, **kwargs)

	Finds a record by its id in the model’s table in the replica database.
:returns: an instance of the model.






	
classmethod find_by(values={}, **kwargs)

	Returns a single record matching the criteria in values found in the model’s table in the replica database.


	Parameters

	values (dict) – Criteria to find the record.



	Returns

	an instance of the model.










	
classmethod insert(**kwargs)

	Performs an INSERT statement on the model’s table in the master database.


	Parameters

	values (dict) – A dictionary containing the values to be inserted. datetime, dict and bool objects can be passed as is and will be correctly serialized by psycopg2.










	
classmethod last(limit=1, **kwargs)

	Returns the last limit records inserted in the model’s table in the replica database. Rows are sorted by created_at.






	
classmethod query(sql=None, filename=None, **kwargs)

	run raw sql from sql or file against.


	Parameters

	
	sql (string) – Raw SQL query to pass directly to the connection.


	filename (string) – Path to a file containing a SQL query. The path should be relative to CWD.


	db (string) – optional Database name from your jardin_conf.py, overrides the default database set in the model declaration.


	role (string) – optional One of ('master', 'replica') to override the default.






	Returns

	jardin.Collection collection, which is a pandas.DataFrame.










	
classmethod replica_lag(**kwargs)

	Returns the current replication lag in seconds between the master and replica databases.


	Returns

	float










	
classmethod table_schema()

	Returns the table schema.


	Returns

	dict










	
classmethod transaction()

	Enables multiple statements to be ran within a single transaction, see Features.












          

      

      

    

  

    
      
          
            
  
jardin.Collection


	
class jardin.Collection(data=None, index=None, columns=None, dtype=None, copy=False)

	Base class for collection of records. Inherits from pandas.DataFrame.


	
index_by(field)

	Returns a dict with a key for each value of field and the first record with that value as value.
:param field: Name of the field to index by.
:type field: string.






	
records()

	Returns an iterator to loop over the rows, each being an instance of the model’s record class, i.e. jardin_record by default.
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